Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 191: 69-77, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454978

RESUMO

It is becoming increasingly evident that mesenchymal stem/stromal cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor proliferation, angiogenesis, invasion, and metastasis, as well as mediate therapeutic resistance. Consequently, understanding the regulatory mechanisms of ASCs that influence the tumor microenvironment may provide an avenue for further treatment. To understand the role of the ASC secretome in breast cancer cell proliferation, death, and phenotype alteration, adipose-derived stem cell-conditioned medium (mASC) was used to cultivate MCF-7 and MDA-MB-231 cells. These breast cancer cells in mASC showed a shorter doubling time, higher frequency of EdU positivity, and higher levels of phosphorylated histone 3. In addition, increased expression of cyclin B1 was observed, suggesting that proliferation was induced. The mASC was also able to increase apoptosis in MCF-7 cells, which was confirmed by caspase-7 activation. The number of tumor-initiating cells (CD44+ CD24-/low) and migration capacity were increased in cells cultivated in mASC. These data collectively suggest that ASC-conditioned medium can induce selective pressure by increasing cell proliferation, giving rise to a more aggressive phenotype in MCF-7 and MDA-MB-231 cells. Our study provides a foundation for further elucidation of the precise mechanism underlying ASCs in breast cancer cells and the modulation of ASCs in potential therapeutic uses.


Assuntos
Tecido Adiposo/metabolismo , Neoplasias da Mama/metabolismo , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Secretoma/metabolismo , Microambiente Tumoral , Tecido Adiposo/patologia , Neoplasias da Mama/patologia , Técnicas de Cocultura , Feminino , Humanos , Células MCF-7 , Células-Tronco Mesenquimais/patologia
2.
Cell Biochem Funct ; 39(3): 442-454, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389760

RESUMO

Human adipose-derived stromal/stem cells (ASC) have immunomodulatory properties and the potential to differentiate into several cell lines, important for application in regenerative medicine. However, the contamination with dermal fibroblasts (FIB) can impair the beneficial effects of ASC in cell therapy. It is then essential to develop new strategies that contribute to the distinction between these two cell types. In this study, we performed functional assays, high-throughput RNA sequencing (RNA-Seq) and quantitative PCR (qPCR) to find new markers that can distinguish ASC and FIB. We showed that ASC have adipogenic and osteogenic differentiation capacity and alkaline phosphatase activity, not observed in FIB. Gene expression variation analysis identified more than 2000 differentially expressed genes (DEG) between these two cell types. We validated 16 genes present in the list of DEG, including the alkaline phosphatase gene (ALPL). In conclusion, we showed that ASC and FIB have distinct biological properties as demonstrated by alkaline phosphatase activity and differentiation capacity, besides having different gene expression profiles. SIGNIFICANCE OF THE STUDY: Although many differences between stromal stem cells derived from human adipose tissue (ASC) and human dermal fibroblasts (FIB) are described, it is still difficult to find specific markers to differentiate them. This problem can interfere with the therapeutic use of ASC. This work aimed to find new markers to differentiate these two cell populations. Our findings suggest that these cells can be distinguished by biological and molecular characteristics, such as adipogenic and osteogenic differentiation, alkaline phosphatase activity and differential gene expression profiles. The DEG were related to the regulation of the cell cycle, development process, structural organization of the cell and synthesis of the extracellular matrix. This study helps to find new cellular markers to distinguish the two populations and to better understand the properties of these cells, which can improve cell therapy.


Assuntos
Tecido Adiposo/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , RNA-Seq , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Derme/citologia , Fibroblastos/citologia , Humanos , Especificidade de Órgãos , Células-Tronco/citologia , Células Estromais/citologia , Células Estromais/metabolismo
3.
J Biol Chem ; 294(45): 16650-16662, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537645

RESUMO

Calcium (Ca2+) signaling within the cell nucleus regulates specific cellular events such as gene transcription and cell proliferation. Nuclear and cytosolic Ca2+ levels can be independently regulated, and nuclear translocation of receptor tyrosine kinases (RTKs) is one way to locally activate signaling cascades within the nucleus. Nuclear RTKs, including the epidermal growth factor receptor (EGFR), are important for processes such as transcriptional regulation, DNA-damage repair, and cancer therapy resistance. RTKs can hydrolyze phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) within the nucleus, leading to Ca2+ release from the nucleoplasmic reticulum by inositol 1,4,5-trisphosphate receptors. PI(4,5)P2 hydrolysis is mediated by phospholipase C (PLC). However, it is unknown which nuclear PLC isoform is triggered by EGFR. Here, using subcellular fractionation, immunoblotting and fluorescence, siRNA-based gene knockdowns, and FRET-based biosensor reporter assays, we investigated the role of PLCδ4 in epidermal growth factor (EGF)-induced nuclear Ca2+ signaling and downstream events. We found that EGF-induced Ca2+ signals are inhibited when translocation of EGFR is impaired. Nuclear Ca2+ signals also were reduced by selectively buffering inositol 1,4,5-trisphosphate (InsP3) within the nucleus. EGF induced hydrolysis of nuclear PI(4,5)P2 by the intranuclear PLCδ4, rather than by PLCγ1. Moreover, protein kinase C, a downstream target of EGF, was active in the nucleus of stimulated cells. Furthermore, PLCδ4 and InsP3 modulated cell cycle progression by regulating the expression of cyclins A and B1. These results provide evidence that EGF-induced nuclear signaling is mediated by nuclear PLCδ4 and suggest new therapeutic targets to modulate the proliferative effects of this growth factor.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fosfolipase C delta/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Ciclina A/metabolismo , Ciclina B1/metabolismo , Receptores ErbB/metabolismo , Humanos , Hidrólise , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C delta/antagonistas & inibidores , Fosfolipase C delta/genética , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
4.
Cell Signal ; 49: 59-67, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29859928

RESUMO

Ca2+ is an important second messenger, and it is involved in many cellular processes such as cell death and proliferation. The rise in intracellular Ca2+ levels can be due to the generation of inositol 1,4,5-trisphosphate (InsP3), which is a product of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipases C (PLCs), that leads to Ca2+ release from endoplasmic reticulum by InsP3 receptors (InsP3R). Ca2+ signaling patterns can vary in different regions of the cell and increases in nuclear Ca2+ levels have specific biological effects that differ from those of Ca2+ increase in the cytoplasm. There are PLCs in the cytoplasm and nucleus, but little is known about the functions of nuclear PLCs. This work aimed to characterize phenotypically the human PLCδ4 (hPLCδ4) in mesenchymal stem cells. This nuclear isoform of PLC is present in different cell types and has a possible role in proliferative processes. In this work, hPLCδ4 was found to be mainly nuclear in human adipose-derived mesenchymal stem cells (hASC). PLCδ4 knockdown demonstrated that it is essential for hASC proliferation, without inducing cell death. An increase of cells in G1, and a reduction of cells on interphase and G2/M in knockdown cells were seen. Furthermore, PLCδ4 knockdown increased the percentage of senescent cells, p16INK4A+ and p21Cip1 mRNAs expression, which could explain the impaired cell proliferation. The results show that hPLCδ4 is in involved in cellular proliferation and senescence in hASC.


Assuntos
Proliferação de Células , Senescência Celular , Fosfolipase C delta/metabolismo , Tecido Adiposo/citologia , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fosfolipase C delta/antagonistas & inibidores , Fosfolipase C delta/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Struct Biol ; 202(1): 61-69, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277356

RESUMO

Nuclear Epidermal Growth Factor Receptor (EGFR) has been associated with worse prognosis and treatment resistance for several cancer types. After Epidermal Growth Factor (EGF) binding, the ligand-receptor complex can translocate to the nucleus where it functions in oncological processes. By three-dimensional quantification analysis of super-resolution microscopy images, we verified the translocation kinetics of fluorescent conjugated EGF to the nucleus in two mesenchymal cell types: human adipose tissue-derived stem cells (hASC) and SK-HEP-1 tumor cells. The number of EGF clusters in the nucleus does not change after 10 min of stimulation with EGF in both cells. The total volume occupied by EGF clusters in the nucleus of hASC also does not change after 10 min of stimulation with EGF. However, the total volume of EGF clusters increases only after 20 min in SK-HEP-1 cells nuclei. In these cells the nuclear volume occupied by EGF is 3.2 times higher than in hASC after 20 min of stimulation, indicating that translocation kinetics of EGF differs between these two cell types. After stimulation, EGF clusters assemble in larger clusters in the cell nucleus in both cell types, which suggests specific sub-nuclear localizations of the receptor. Super-resolution microscopy images show that EGF clusters are widespread in the nucleoplasm, and can be localized in nuclear envelope invaginations, and in the nucleoli. The quantitative study of EGF-EGFR complex translocation to the nucleus may help to unravel its roles in health and pathological conditions, such as cancer.


Assuntos
Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Linhagem Celular Tumoral , Linhagem da Célula , Fator de Crescimento Epidérmico/química , Corantes Fluorescentes/química , Humanos , Cinética , Células-Tronco Mesenquimais/citologia , Membrana Nuclear/metabolismo , Transporte Proteico
6.
Infect Genet Evol ; 55: 332-342, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28970112

RESUMO

Trypanosoma cruzi is a protozoan parasite and the causative agent of Chagas disease. Like most living organisms, it is susceptible to oxidative stress, and must adapt to distinct environments. Hence, DNA repair is essential for its survival and the persistence of infection. Therefore, we studied whether T. cruzi has a homolog counterpart of the MutY enzyme (TcMYH), important in the DNA Base Excision Repair (BER) mechanism. Analysis of T. cruzi genome database showed that this parasite has a putative MutY DNA glycosylase sequence. We performed heterologous complementation assays using this genomic sequence. TcMYH complemented the Escherichia coli MutY- strain, reducing the mutation rate to a level similar to wild type. In in vitro assays, TcMYH was able to remove an adenine that was opposite to 8-oxoguanine. We have also constructed a T. cruzi lineage that overexpresses MYH. Although in standard conditions this lineage has similar growth to control cells, the overexpressor is more sensitive to hydrogen peroxide and glucose oxidase than the control, probably due to accumulation of AP sites in its DNA. Localization experiments with GFP-fused TcMYH showed this enzyme is present in both nucleus and mitochondrion. QPCR and MtOX results reinforce the presence and function of TcMYH in these two organelles. Our data suggest T. cruzi has a functional MYH DNA glycosylase, which participates in nuclear and mitochondrial DNA Base Excision Repair.


Assuntos
DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Estresse Oxidativo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Dano ao DNA , DNA Glicosilases/química , Reparo do DNA , DNA Mitocondrial , Ativação Enzimática , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Mutação , Transporte Proteico , Análise de Sequência de DNA
7.
Stem Cells Int ; 2017: 9841035, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358958

RESUMO

Mesenchymal stem/stromal cells (MSCs) are promising tools in cell therapy. They secrete extracellular vesicles (EVs) that carry different classes of molecules that can promote skin repair, but the mechanisms are poorly understood. Skin wound healing is a complex process that requires the activity of several signaling pathways and cell types, including keratinocytes and fibroblasts. In this study, we explored whether adipose tissue MSC-derived EVs could accelerate migration and proliferation of keratinocytes and fibroblasts, activate the AKT pathway, and promote wound healing in vivo. Furthermore, we evaluated if EV effects are miR-205 dependent. We found that MSC EVs had an average diameter of 135 nm. Keratinocytes and fibroblasts exposed to EVs exhibited higher levels of proliferation, migration, and AKT activation. Topical administration of EVs accelerated skin wound closure. Knockdown of miR-205 decreased AKT phosphorylation in fibroblasts and keratinocytes, whereas migration was decreased only in keratinocytes. Moreover, knockdown of miR-205 failed to inhibit AKT phosphorylation in fibroblasts and keratinocytes exposed to EVs. About the mechanism of EV effects, we found that incubation with EVs prevented inhibition of AKT activation by miR-205 knockdown, suggesting that EVs activate AKT independently of miR-205. In conclusion, we demonstrated that EVs are a promising tool for wound healing.

8.
Environ Mol Mutagen ; 55(4): 309-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24347026

RESUMO

Benznidazole (BZ) is the most commonly used drug for the treatment of Chagas disease. Although BZ is known to induce the formation of free radicals and electrophilic metabolites within the parasite Trypanosoma cruzi, its precise mechanisms of action are still elusive. Here, we analyzed the survival of T. cruzi exposed to BZ using genetically modified parasites overexpressing different DNA repair proteins. Our results indicate that BZ induces oxidation mainly in the nucleotide pool, as heterologous expression of the nucleotide pyrophosphohydrolase MutT (but not overexpression of the glycosylase TcOgg1) increased drug resistance in the parasite. In addition, electron microscopy indicated that BZ catalyzes the formation of double-stranded breaks in the parasite, as its genomic DNA undergoes extensive heterochromatin unpacking following exposure to the drug. Furthermore, the overexpression of proteins involved in the recombination-mediated DNA repair increased resistance to BZ, reinforcing the idea that the drug causes double-stranded breaks. Our results also show that the overexpression of mitochondrial DNA repair proteins increase parasite survival upon BZ exposure, indicating that the drug induces lesions in the mitochondrial DNA as well. These findings suggest that BZ preferentially oxidizes the nucleotide pool, and the extensive incorporation of oxidized nucleotides during DNA replication leads to potentially lethal double-stranded DNA breaks in T. cruzi DNA.


Assuntos
Enzimas Reparadoras do DNA/genética , Resistência a Medicamentos/genética , Nitroimidazóis/farmacologia , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Sobrevivência Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/genética , Doença de Chagas/parasitologia , DNA Glicosilases/genética , Reparo do DNA/efeitos dos fármacos , DNA de Protozoário/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/genética
9.
PLoS One ; 7(8): e42484, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876325

RESUMO

The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1(-/-) (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H(2)O(2)). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H(2)O(2) of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER.


Assuntos
DNA Glicosilases/metabolismo , Guanina/análogos & derivados , Trypanosoma cruzi/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/química , DNA Glicosilases/genética , Expressão Gênica , Teste de Complementação Genética , Genoma Mitocondrial , Genoma de Protozoário , Guanina/metabolismo , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...